Как работает форсунка common rail?

Устройство и принцип работы системы Common Rail

Схема и детали системы

Высокое давление 230-1800 бар.

Давление в обратной магистрали форсунок, 10 bar.

Давление в напорной магистрали, Давление в обратной магистрали.

1. Подкачивающий топливный насос.
Осуществляет постоянную подкачку топлива в напорную магистраль.

2. Топливный фильтр с клапаном предварительного подогрева.
Клапан предварительного подогрева препятствует при низких температурах окружающей среды засорению фильтра кристаллизующимися парафинами.

3. Дополнительный топливный насос.
Подаёт топливо из напорной магистрали к топливному насосу.

4. Сетчатый фильтр.
Предохраняет насос высокого давления от попадания инородных частиц.

5. Датчик температуры топлива.
Измеряет текущую температуру топлива.

6. Насос высокого давления (ТНВД).
Создаёт давление, необходимое для работы системы впрыска.

7. Клапан дозирования топлива.
Регулирует количество топлива, которое необходимо подать в аккумулятор высокого давления.

8. Регулятор давления топлива.
Регулирует давление топлива в магистрали высокого давления.

9. Аккумулятор давления (топливная рампа).
Накапливает под высоким давлением топливо,необходимое для впрыска во все цилиндры.

10. Датчик давления топлива.
Измеряет текущее давление топлива в магистрали высокого давления.

11. Редукционный клапан.
Поддерживает давление в обратной магистрали форсунок системы впрыска на уровне 10 бар. Такое давление необходимо для работы форсунок.

12. Форсунки.

Система впрыска Common Rail

Система впрыска Common Rail представляет систему впрыска топлива для дизельных двигателей с аккумулятором высокого давления. Термин «Common Rail» означает «общая балка или рампа» и служит для обозначения общей топливной рампы
(аккумулятора давления) для всех форсунок ряда цилиндров.

В данной системе процесс впрыска отделён от процесса создания высокого давления. Необходимое для системы впрыска высокое давление создаётся с помощью отдельного топливного насоса высокого давления (ТНВД).
Топливо, находящееся под высоким давлением, накапливается в аккумуляторе давления (топливной рампе)
и через короткие топливопроводы высокого давления подаётся к форсункам.
Управление системой впрыска Common Rail осуществляется системой управления двигателя Bosch EDC.

Система впрыска Common Rail располагает большими возможностями для регулирования давления и параметров впрыска в соответствии с режимом работы двигателя. Это создает хорошие предпосылки для удовлетворения постоянно растущих требований к системе впрыска в плане улучшения экономичности, снижения токсичности ОГ и шумности двигателя.

В данной системе впрыска Common Rail используются пьезоэлектрические форсунки.

Управление форсунками осуществляется исполнительным механизмом, основанном на использовании пьезоэлемента. Скорость переключения такого механизма во много раз выше, чем у форсунки с электромагнитным клапаном.

Кроме того, масса подвижной иглы у распылителя пьезоэлектрической форсунки примерно на 75 % меньше, чем у форсунки с электромагнитным приводом.

Это обеспечивает пьезоэлектрическим форсункам следующие преимущества:

* короткое время переключения
* возможность произвести несколько впрысков в течение рабочего такта
* точность дозировки впрыска

Работа пьезофорсунки Common Rail

И для интереса. Как изготавливается форсунка Common Rail Piezo на заводе.

Процесс впрыска

Высокая скорость переключения пьезоэлектрической форсунки позволяет гибко и с высокой точностью управлять фазами впрыска и дозировать подачу топлива. Благодаря этому управление процессом впрыска топлива может осуществляется в точном соответствии с потребностью двигателя в определённый момент времени. За время такта может быть произведено до пяти отдельных впрысков.

ТНВД

Насос высокого давления представляет собой одноплунжерный насос. Привод насоса осуществляется через зубчатый ремень коленвала с частотой, равной частоте оборотов двигателя. ТНВД предназначен для создания в топливной магистрали давления до 1800 бар, необходимого для работы системы впрыска. С помощью двух кулачков, развёрнутых на приводном вале на 180°, скачок давления формируется синхронно с впрыском во время рабочего такта конкретного цилиндра. Это обеспечивает равномерную нагрузку привода насоса и снижает колебания давления в области высокого давления.
Для снижения трения при передаче усилия от приводных кулачков к плунжеру насоса между ними установлен ролик.

Устройство насоса высокого давления

Схематическое представление насоса высокого давления.

Особенности устройства и преимущества топливной системы Common Rail

Топливная система Common Rail применяется исключительно в дизельных двигателях и считается наиболее прогрессивной на текущий момент. В сравнении с другими схемами она обеспечивает более экономичный расход топлива, повышает экологическую безопасность автомобиля, отличается низким уровнем шума, но главное – создает более высокое давление подачи в камеру сгорания. О том, как устроена система впрыска Common Rail (Коммон Рейл) и каковы принципы ее работы, пойдет речь далее.

  1. Что такое топливная система Common Rail
  2. Особенности и принцип работы
  3. Достоинства и недостатки системы Common rail

Что такое топливная система Common Rail

Дословно термин Common Rail переводится на русский как общая магистраль. Главной конструктивной особенностью этой системы является наличие топливной рампы, в которой происходит аккумуляция топлива до его дальнейшей подачи в форсунки дизельного двигателя. В силу этой особенности подобные системы также называют аккумуляторными. Впервые она была представлена компанией Bosch в 1996 году.

Устройство топливной системы Common Rail

Конструктивно система Коммон Рейл делится на контуры низкого и высокого давления и состоит из следующих элементов:

  • Подкачивающий топливный насос. Он подает дизельное топливо из бака в напорную магистраль.
  • Топливный фильтр, оснащенный клапаном для предварительного прогрева при низких температурах.
  • Вспомогательный топливный насос. Выполняет перекачку топлива от нагнетательной магистрали.
  • Сетчатый фильтр.
  • Температурный датчик. Фиксирует уровень прогрева топлива в системе.
  • ТНВД (топливный насос высокого давления) – чаще всего применяется насос распределительного типа.
  • Дозирующий клапан. Он регулирует количество топлива, попадающего в рампу.
  • Регулятор давления дизтоплива. Необходим для поддержания заданных показателей давления топлива в магистрали высокого давления.
  • Топливная рампа или аккумулятор. Фактически представляет собой трубку, по длине которой расположены штуцеры крепления форсунок.
  • Датчик давления. Расположен в магистрали высокого давления. Он фиксирует и передает соответствующие данные ЭБУ (электронный блок управления) двигателя.
  • Редукционный, или перепускной клапан. Позволяет поддерживать показатель давления в обратной магистрали на уровне 1 МПа, что обеспечивает правильную работу форсунок.
  • Топливные форсунки. Бывают двух типов: электрогидравлические или пьезоэлектрические. Первые управляются электромагнитным клапаном, а вторые оснащены пьезокристаллами, что позволяет существенно повысить скорость их работы.

Более 70% всех производимых сегодня дизельных двигателей оснащается топливными системами Common Rail.

Особенности и принцип работы

Принцип работы топливной системы этого типа основан на разделении процессов создания высокого давления и непосредственно впрыска дизеля. Из топливного бака горючее закачивается в систему насосом низкого давления. При этом оно проходит через фильтры, где очищается от примесей и различных загрязнений. По контуру низкого давления дизтопливо поступает в ТНВД, который имеет механический привод. Он, в свою очередь, выполняет закачку топлива в рампу, где оно аккумулируется до момента впрыска. Это позволяет постоянно поддерживать нужный уровень давления, независимо от текущего режима работы двигателя.

Получая данные от датчиков системы, ЭБУ двигателя определяет, какое количество топлива необходимо подать ТНВД на топливную рампу. После этого открывается клапан дозирования горючего, которое поступает в аккумулятор. Топливо при этом находится под заданным уровнем давления, поддерживаемым регулятором.

Читайте также  Как работает ручник на барабанных тормозах?

Схема форсунки системы коммон рейл в разрезе

Как только необходимый объем дизеля закачивается в рампу, ЭБУ посылает команду на открытие форсунок, соответствующих циклу работы двигателя. В течение одного цикла работы такой системы осуществляется многократный впрыск, состоящий из трех этапов:

  • Предварительный – необходим для повышения температуры и сжатия в камере сгорания, что позволяет ускорить процесс самовоспламенения. На холостом ходу может выполняться два предварительных впрыска, при увеличении оборотов – один, а на полной мощности предварительного впрыска нет.
  • Основной – непосредственно обеспечивающий работу мотора.
  • Дополнительный – необходим для увеличения температуры нагрева отработавших газов, что обеспечивает сгорание сажи и уменьшение объема вредных выбросов в атмосферу.

В современных дизельных двигателях может выполняться от 7 до 9 фаз впрыска.

Достоинства и недостатки системы Common rail

Изначально уровень давления, создаваемый на топливной рампе, составлял 140 МПа. Начиная с четвертого поколения, система позволила достигать показателей до 220 МПа. Такой прогресс позволил добиться увеличения объема топлива, впрыскиваемого в цилиндры мотора за один цикл, а следовательно, повысить мощность дизельных автомобилей.

Аккумуляторные топливные системы используют целый комплекс датчиков, позволяющих учитывать:

  • давление в магистральном трубопроводе;
  • скорость вращения коленчатого вала;
  • расход воздуха, положение педали газа;
  • температуру топлива и воздуха;
  • данные лямбда-зонда.

Сигналы, поступающие от этих датчиков, дают возможность ЭБУ максимально оптимизировать работу дизельного двигателя. В сравнении с системами ТНВД с насос-форсунками, ремонтопригодность Common Rail выше в силу более простого устройства.

Среди недостатков системы Коммон Рейл – необходимость использования топлива более высокого качества. Поскольку в таких двигателях используются конструктивно сложные форсунки, их ресурс ниже. Также очень важно обеспечение полной герметичности. Так, например, при поломке форсунки, ее клапан будет постоянно находиться в открытом положении, и топливная система перестанет работать.

Появление топливной системы Common Rail стало настоящим прорывом в производстве дизельных двигателей. Она обеспечила возможность применения для дизелей всех классов высоких экологических стандартов, активно внедряемых в развитых странах.

Принцип работы форсунки Common Rail

Форсунки Common Rail связаны с топливным аккумулятором высокого давления магистралями из толстостенных трубок, способных выдерживать давление до 2 500 бар. Форсунки системы Common Rail по аналогии с форсунками на дизельных двигателях с непосредственным впрыском топлива устанавливаются с зажимными скобами в головке цилиндра. Тем самым допускается возможность установки форсунок указанной системы на дизельные двигатели с непосредственным впрыском топлива без кардинальной модернизации головки блока цилиндров.

Необходимые время начала впрыска и величина подачи топлива (продолжительность впрыска) обеспечиваются открытием электромагнитного клапана каждой форсунки посредством команды от электронного блока управления ДВС, получающего сигналы о положении коленчатого вала и частоты его вращения через соответствующие датчики. Форсунка состоит из следующих основных функциональных блоков:

  • распылительный узел
  • система гидропривода
  • клапанный узел

Принцип действия форсунки

А – форсунка в состоянии покоя B – форсунка открыта C – форсунка закрыта

1 – обратная топливная магистраль; 2 – катушка электромагнита; 3 – якорь электромагнита; 4 – шарик клапана; 5 – камера управляющего давления; 6 – конус иглы распылителя; 7 – сопловые отверстия распылителя; 8 – дроссельное отверстие отвода топлива; 9 – магистраль высокого давления; 10 – дроссельное отверстие подачи топлива; 11 – мультипликатор;

Форсунка в «состоянии покоя» (Рис А). Топливо подается по магистрали 9 высокого давления (см. рис. А) через подводящий канал к распылителю форсунки, а также через дроссельное отверстие 10 подачи топлива — в камеру 5 управляющего клапана. Через дроссельное отверстие 8 отвода топлива, которое может открываться электромагнитным клапаном, камера соединяется с обратной топливной магистралью 1. При закрытом дроссельном отверстии 8 гидравлическая сила, действующая сверху на мультипликатор 11 управляющего клапана и усилие пружины (ориентировочно, в зависимости от моделей

30Н), превышает силу давления топлива снизу на конус 6 иглы распылителя. Вследствие этого игла прижимается к седлу распылителя и плотно закрывает сопловые отверстия 7 распылителя. В результате топливо в камеру сгорания не попадает.

Форсунка открыта, процесс впрыска (Рис В). При срабатывании электромагнитного клапана якорь электромагнита сдвигается вверх (на рис. 8), открывая дроссельное отверстие. Соответственно снижаются как давление в камере управляющего клапана, так и гидравлическая сила, действующая на мультипликатор. Под действием давления топлива на конус 6 игла распылителя отходит от седла и топливо через сопловые отверстия 7 впрыскивается в камеру сгорания цилиндра. Применение такого непрямого управления иглой вызвано тем, что непосредственного усилия электромагнитного клапана для быстрого подъема распылителя недостаточно. Также дополнительно для увеличения моментов (уменьшения времени срабатывания) применяются промежуточные вставки между мультипликатором и иглой распылителя — упругие стержни, способные сжиматься-распрямляться. А для исключения явления «отскока» шарика клапана в форсунках применяются демпфирующие устройства.

Форсунка закрывается/ закрыта (Рис. С). После закрытия клапана давление над мультипликатором повышается, вследствие чего он перемещается вниз и через упругий стержень воздействует на иглу распылителя. Благодаря упругому стержню (за счет его распрямления) скорость перемещения иглы увеличивается, а время опускания уменьшается. Игла полностью опускается и перекрывает доступ к сопловым отверстиям распылителя.

Более подробно и наглядно принцип работы форсунки Common Rail описан в анимационном ролике «Как работает форсунка Common Rail», размещенном на сайте нашей компании в разделе «Видеотека».

Не бойтесь форсунок Common Rail

Хотя современные дизельные двигатели становятся все сложнее, система Common Rail с технической стороны кажется даже проще, чем применяемые ранее системы с механическим ТНВД. В конечном итоге система Common Rail полностью вытеснила с рынка конкурирующие решения, например с насос-форсунками.

Различные концепции

В легковых автомобилях используется несколько видов систем Common Rail. Упрощенно их можно разбить на два типа (электромагнитные и пьезоэлектрические) и четыре производителя (Bosch, Continental, Delphi, Denso). Bosch, Delphi и Denso – известные производители автомобильной электроники. Bosch создавал системы впрыска еще в самом начале прошлого века. Delphi технологию впрыска дизельного топлива купил у компании Lucas. Японский Denso набрался опыта, работая совместно с Bosch и Magnetti Mareli. Continental приобрел Siemens и VDO, став главным конкурентом немецкого Bosch. Форсунки этой компании обозначаются эмблемой Continental уже около года, ранее они носили логотип Siemens.

Самым универсальным является лидер рынка — Bosch, который производит оба типа форсунок: электромагнитные и пьезоэлектрические. В гораздо меньших масштабах оба вида форсунок производят Delphi и Denso. Continental (Siemens) ограничивается исключительно пьезоэлектрической техникой.

Каждый кулик хвалит свое болото

В рекламных буклетах каждый производитель хвалит свой продукт, как лучшее решение. Как Вы уже догадались, на практике у многих из них часто выявляется целый ряд недостатков. Простейшую конструкцию имеют электромагнитные форсунки Bosch. Ремонт немецких форсунок не сложен. Delphi хотел пойти дальше и разработал для своих электромагнитных форсунок гораздо более сложную систему управления. В результате его продукт оказался наиболее чувствительным к качеству топлива и, к сожалению, не слишком долговечным. Среди электромагнитных форсунок наиболее надежными считаются Denso, но есть сложности с доступностью запасных частей для ремонта. Наиболее сбалансированными считаются пьезоэлектрические форсунки конструкции Бош и Сименс (Континенталь), а также отчасти Denso. Форсунки похожи друг на друга, как в техническом плане, так в плане надежности. Из этой группы выбивается только Delphi, пьезофорсунки которого на протяжении всего времени слыли менее выносливыми.

Читайте также  Работа дизельного двигателя на холостом ходу вредна

Чьи форсунки можно отремонтировать?

С точки зрения возможности ремонта наиболее предпочтительны турбодизели с классическим впрыском Common Rail компании Bosch. С восстановлением форсунок этого типа способны справиться практически все специализированные центры. Но конечный результат зависит от усердия и честности мастера. Электромагнитные форсунки Delphi также поддаются ремонту, но требуют замены наконечника и кодировки форсунки после ремонта. Это увеличивает стоимость ремонта, но без кодировки двигатель будет работать с перебоями. Электромагнитные форсунки Denso одни из самых долговечных, но ремонт возможен лишь при наличии запасных частей. А вот с этим как раз не все хорошо.

Пьезофорсунки Delphi и Bosch считаются неремонтопригодными. В случае с Siemens (Continental) появились наконечники впрыска, позволяющие изменять размер, что позволяет восстановить работоспособность форсунки. Однако, это касается лишь некоторых моделей с двигателями PSA 2.0 HDI 16V. Различные модификации данного турбодизеля применяются в автомобилях Ford Mondeo IV, Focus, Galaxy, S-Max и Volvo S40, S60.

На что обращать внимание?

Преимущества и недостатки форсунок должны быть известны еще на этапе выбора автомобиля. Учитывая риск выхода из строя форсунок, следует, как огня избегать двух моделей с одним и тем же двигателем: Ford Mondeo III 2.0 TDCi и Jaguar X-Type 2.0 d. Врожденные дефекты имели и форсунки Mercedes E250 CDI W212 начала производства. Остальные автомобили с форсунками Delphi нареканий не вызывают. Некоторые моторы позволяют использовать форсунки разных производителей. Например, двигатель 1.6 HDi/TDCi имел четыре различных типа систем впрыска, а самым дешевым в обслуживании был Бош. Аналогичная ситуация с 2.0 HDi. Форсунки Siemens (Continental) могут быть восстановлены, а пьезофорсунки Bosch — нет.

Что надо знать о форсунках Common Rail?

Электромагнитные форсунки Bosch

Они разбираются и сравнительно просты в ремонте. Стоимость восстановления одной форсунки около 100-150 долларов за штуку. Выдерживают они 200 000 км. В 1.9 CDTi компании Opel и 1.9 JTD Fiat форсунки способны дожить до 500 000 км. Цена новой форсунки – около 250-300 долларов за штуку.

Alfa Romeo 159 2.0 JTDM, Fiat Punto 1.3 JTD, Kia CEE’D 1.6 CRDi, Mercedes C 220 CDI W202, Opel Vectra C 1.9 CDTI, Renault Laguna II 1.9 DCI, Volvo V70 D5, BMW 320d E46.

Электромагнитные форсунки Delphi

По сравнению с Бош форсунки Делфи значительно более чувствительны к качеству топлива. Они немного дороже в ремонте – около 150-200 долларов за штуку — из-за необходимости кодирования с новым наконечником. Средний срок службы 150 000 км. Стоимость новой форсунки – около 250 долларов.

Dacia Logan 1.5 DCI, Ford Focus 1.8 TDCi, Renault Megane II 1.5 DCI Nissan Almera 1.5 DCI, Hyundai Santa Fe 2.2 CRDi, Kia Carnival 2.9 CRDi, Ford Mondeo 2.0 TDCi III.

Электромагнитные форсунки Denso

Электромагнитные форсунки Denso считаются наиболее качественными. До недавнего времени ощущалась нехватка запасных частей, но в настоящее время большинство из них можно восстановить. Стоимость ремонта около 150-250 долларов за единицу. Цена новой форсунки – около 450 долларов.

Mazda 6 2.0 CD, Nissan Pathfinder 2.5 DCI, Opel Corsa 1.7 CDTI, Mitsubishi Pajero 3.2 DI-D II, Toyota Avensis 2.0 D-4D.

Пьезоэлектрические форсунки Continental ( Siemens )

Раньше предлагались под именем Сименс, а теперь Континенталь. Они долговечны, но еще до недавнего времени считались неремонтопригодными. Сегодня появляются запасные части, и некоторые мастерские берутся за ремонт. Ресурс форсунок более 200 000 км. Стоимость новой форсунки около 350 долларов.

Citroen C5 2.0 HDi II, Mercedes C220 CDI W204, Volvo V50 D4, Peugeot 207 1.4 HDi.

Пьезоэлектрические форсунки Bosch

Встречаются во многих современных автомобилях и конструктивно очень похожи на форсунки Continental. Имеют они и схожий ресурс – более 200 000 км. К сожалению, они неремонтопригодные. Новые стоят около 300 долларов.

Audi A6 3.0 TDI, BMW 320d E90, Nissan Qashqai 2.0 DCI, Skoda Octavia III 2.0 TDI.

Пьезоэлектрические форсунки Denso

Они достаточно надежные, но не разборные и поэтому ремонту не подлежат. Применяются в небольшом количестве автомобилей. Чаще всего их можно встретить в Lexus и новых моделях Toyota. Стоимость новой форсунки около 500 долларов.

Lexus IS 2.2D, Toyota RAV-4 IV 2.2 D-4D.

Пьезоэлектрические форсунки – Delphi

На рынке представлены ограничено. Дебютировали с Mercedes E250 CDI BlueEFFICIENCY в 2009 году, и сразу же начали вызывать проблемы. Позже конструкция форсунок была изменена.

Mercedes E 250 CDI Bluefficiency.

Неисправности системы впрыска Common Rail

Как правило, система впрыска Common Rail в состоянии продержаться без каких-либо проблем более 200 000 км. Но все зависит не только от конструкции, но и условий эксплуатации. Наименее надежны и наиболее чувствительны к качеству топлива форсунки фирмы Делфи. Первые проблемы порой появляются уже при 140 000 км. Наиболее выносливой является продукция компании Денсо. Пьезоэлектрические форсунки Бош и Континентал (Сименс), как правило, выдерживают более 200 000 км. Столько же служат и электромагнитные форсунки Бош.

Характерные симптомы неисправностей системы впрыска Common Rail

— неравномерная работа двигателя;

— увеличение расхода топлива;

Тем не менее, сбои в работе системы Common Rail не всегда являются результатом повреждения форсунок. Дефект мог настигнуть насос высокого давления, регулятор давления топлива и другие датчики. В любом случае параметры работы системы впрыска дают практически точный ответ на вопрос о состоянии форсунок.

Что не сделать в гараже

«Обследовать» систему можно с помощью специального диагностического компьютера по параметрам давления и так называемой «коррекции форсунок». Еще один простой способ – определение величины перелива. Так же возможно снятие форсунок для осмотра или проверки на стенде. К сожалении, в некоторых случаях изъять форсунку невозможно — прикипает.

Ремонт форсунок Common Rail

Электромагнитные форсунки

Технические возможности позволяют восстановить все электромагнитные форсунки (Bosch, Delphi, Denso). Ограничения может наложить доступность запасных частей: клапаны, наконечники, катушки, корпуса и т.д.). В случае с Бош никаких проблем нет. Немного хуже с компонентами для Делфи. А для Денсо оригинальных компонентов просто не существует. Есть только небольшая доля неофициальных заменителей. Стоимость восстановительного ремонта зависит от количества заменяемых элементов и производителя форсунок. Для Bosch ориентировочно сумма составит от 50 до 150 долларов за штуку, а для Delphi и Denso – до 200-250 долларов.

Пьезоэлектрические форсунки

Полноценное восстановление пьезоэлектрических форсунок Bosch, Delphi и Denso не возможно. Все, что допустимо – это снять наконечник форсунки, промыть его в ультразвуковом аппарате и проверить работу форсунки на стенде.

Чуть лучше ситуация с некоторыми форсунками Continental (Siemens). Для отдельных форсунок существуют запасные части. Стоимость восстановления – около 150 долларов.

Ремонт форсунок

Разборкой и ремонтом форсунок должны заниматься только специалисты профильных сервисов. Уже сама разборка форсунки требует особого инструмента. Кроме того, до и после разбора необходимо проверить работу форсунки на специальном стенде.

Читайте также  Почему перестало работать радио в машине?

— проверка форсунки на стенде;

— демонтаж и промывка элементов;

— дефектовка и замена необходимых деталей;

— регулировка и сборка форсунки;

— измерение параметров после сборки;

— присвоение индивидуального кода, учитывающего характеристики конкретного экземпляра (для некоторых форсунок).

Только после процесса регенерации и устранения сопутствующих неисправностей (например, осадок в баке или стружка от насоса в системе), форсунки могут быть установлены назад на свое место. Попутно обязательно должен быть заменен топливный фильтр и медные шайбы под форсунками.

«Топливная аппаратура аккумуляторного типа начала применяться на главных судовых дизелях с 1910 г. и наиболее широко использовалась в 50-е годы.

Первым промышленным образцом аккумуляторной топливной системы с электронным управлением без мультипликаторов давления, названный Common Rail, явилась совместная разработка фирм Robert Bosch GmbH, Fiat, Elasis, реализованная в 1997 г. Вместе с тем разработки таких систем велись с 70-х годов, причем именно в России (СССР) наиболее удачно». [1]

Устройство и конструкция форсунок common rail

Топливо в форсунку common rail подается через входной штуцер высокого давления (4) и далее в канал (10) и камеру гидроуправления (8) через жиклер (7). Камера гидроуправления соединяется с линией возврата топлива (1) через жиклер камеры гидроуправления 6, который открывается электромагнитным клапаном.

При закрытом жиклере (6) силы гидравлического давления, приложенные к управляющему плунжеру (9), превосходят силы давления, приложенные к заплечику иглы (11) форсунки. В результате игла садится на седло и закрывает проход топлива под высоким давлением в камеру сгорания.

При подаче пускового сигнала на электромагнитный клапан жиклер (6) открывается, давление в камере гидроуправления падает, и в результате сила гидравлического давления на управляющий плунжер также уменьшается. Поскольку сила гидравлического давления на управляющий плунжер оказывается меньше силы, действующей на заплечик иглы форсунки, последняя открывается, и топливо через сопловые отверстия впрыскивается в камеру сгорания. Такое косвенное управление иглой форсунки, использующее систему мультипликатора, позволяет обеспечить очень быстрый подъем иглы, что невозможно сделать путем прямого воздействия электромагнитного клапана. Так называемая «управляющая доза» топлива, необходимая для подъема иглы форсунки, является дополнительной по отношению к действительному количеству впрыскиваемого топлива, поэтому это топливо направляется обратно, в линию возврата топлива через жиклер камеры гидроуправления.

Кроме «управляющей дозы» в линию возврата топлива и далее в топливный бак также выходят утечки через направляющие иглы форсунки. К коллектору линии возврата топлива также подсоединяются предохранительный клапан (ограничитель давления) аккумулятора и редукционный клапан ТНВД.

Рис. Форсунка common rail. a – форсунка закрыта, b – форсунка открыта (впрыск); 1 – возврат топлива, 2 – электрические выводы, 3 – электромагнитный клапан, 4 – вход топлива из аккумулятора, 5 – шариковый клапан, 6 – жиклер камеры гидроуправления, 7 – «питающий» жиклер, 8 – камера гидроуправления, 9 – управляющий плунжер, 10 – канал к распылителю, 11 – игла форсунки.

Работа форсунки common rail

Работа форсунки может быть разделена на четыре рабочих стадии при работающем двигателе и создании высокого давления ТНВД:

  • Форсунка закрыта с приложенным высоким давлением;
  • Форсунка открывается (начало впрыска); —
  • Форсунка полностью открыта; —
  • Форсунка закрывается (конец впрыска).

Эти рабочие стадии являются результатом действия сил, приложенных к деталям форсунки. При остановленном двигателе и отсутствии давления в аккумуляторе форсунка закрыта под действием пружины.

Форсунка закрыта

При закрытой форсунке питание на электромагнитный клапан не подается (рис. a). При закрытом жиклере камеры гидроуправления пружина якоря прижимает шарик к седлу, высокое давление, подаваемое в камеру и к распылителю форсунки из аккумулятора, увеличивается. Таким образом, высокое давление, действующее на торец управляющего плунжера, вместе с усилием пружины держат форсунку закрытой, преодолевая силы давления в камере распылителя.

Форсунка открывается

Перед началом процесса впрыска, еще при закрытой форсунке, на электромагнитный клапан подается большой ток, что обеспечивает быстрый подъем шарикового клапана (рис. b). Шариковый клапан открывает жиклер камеры гидроуправления и, поскольку теперь электромагнитная сила превосходит силу пружины якоря, клапан остается открытым, и практически одновременно сила тока, подаваемого на обмотку электромагнитного клапана, уменьшается до тока, требуемого для удерживания якоря. Это возможно потому, что воздушный зазор для электромагнитного потока теперь уменьшается. При открытом жиклере топливо может вытекать из камеры гидроуправления в верхнюю полость и далее по линии возврата топлива в бак. Давление в камере гидроуправления уменьшается, нарушается баланс давлений, и давление в камере распылителя, равное давлению в аккумуляторе, оказывается выше давления в камере гидроуправления. В результате сила давления, действующая на торец управляющего плунжера уменьшается, игла форсунки поднимается, и начинается процесс впрыска топлива.

Скорость подъема иглы форсунки common rail определяется разностью расходов через жиклер и сопловые отверстия. Управляющий плунжер достигает верхнего упора, где остается, поддерживаемый «буферным» слоем топлива, образующимся в результате указанной выше разницы расходов через жиклер и сопловые отверстия. Игла форсунки теперь полностью открыта, и топливо впрыскивается в камеру сгорания под давлением, практически равным давлению в аккумуляторе. Распределение сил в форсунке подобно распределению в фазе открытия.

Форсунка закрывается (конец впрыска)

Как только прекращается подача питания на электромагнитный клапан, пружина якоря перемещает его вниз, и шариковый клапан закрывается. Якорь состоит из двух частей, поэтому, хотя тарелка якоря перемещается вниз заплечиком, она может оказывать противодействие возвратной пружиной, что уменьшает напряжения на якорь и шарик.

Закрытие жиклера приводит к повышению давления в камере гидроуправления при поступлении в нее топлива через «питающий» жиклер (7). Это давление, равное давлению в аккумуляторе, действует на торец управляющего плунжера, и сила давления вместе с силой пружины преодолевают силу давления, действующую на заплечик иглы форсунки, которая закрывается.

Скорость посадки иглы форсунки на седло, то есть скорость закрытия форсунки, определяется расходом через «питающий» жиклер. Впрыск топлива прекращается, как только игла форсунки садится на седло.

Топливная аппаратура и системы управления дизелей / Л.В. Грехов, Н.А. Иващенко, В.А. Марков// -М.: Легион-Автодата, 2004. – 342 с.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: