Cvvt двигатель что это такое?

Устройство и принцип работы системы CVVT

Современное законодательство в области экологии заставляет автопроизводителей конструировать более совершенные двигатели, повышать их эффективность и снижать выбросы вредных веществ в отработанных газах. Конструкторы учатся управлять процессами, которые ранее принимались с компромиссными усредненными параметрами. Одной из таких разработок является система изменения фаз газораспределения (CVVT). В этой статье мы не будет подробно описывать про фазы газораспределения, с этой информацией можно ознакомиться здесь.

  1. Устройство системы CVVT
  2. Муфта CVVT
  3. Как работает управляющий клапан-соленоид VVT
  4. Принцип работы
  5. Опережение
  6. Запаздывание
  7. Логика работы CVVT
  8. Обслуживание

Устройство системы CVVT

CVVT (Continuous Variable Valve Timing) – это система непрерывного регулирования фаз газораспределения двигателя, обеспечивающая более эффективное наполнение цилиндров свежим зарядом. Это достигается за счёт смещения момента открытия и закрытия впускного клапана.

Система CVVT автомобиля

Система включает в себя гидравлический контур, состоящий из:

  • Управляющего клапана-соленоида.
  • Фильтра системы VVT.
  • Исполнительного механизма (гидравлической муфты CVVT).

Все компоненты системы устанавливаются в головке блока цилиндров двигателя. Фильтр системы VVT подлежит периодической чистке или замене.

Гидравлические муфты CVVT могут быть установлены как на впускном, так и на обоих валах ДВС.

В случае установки фазовращателей на впускном и выпускном распределительных валах эта система газораспределения будет называться DVVT (Dual Variable Valve Timing).

К дополнительным элементам системы также относятся датчики:

  • Положения и частоты оборотов коленчатого вала.
  • Положения распределительного вала.

Данные элементы подают сигнал на ЭБУ двигателя (блок управления). Последний обрабатывает информацию и формирует сигнал на электромагнитный клапан, регулирующий подачу масла в муфту CVVT.

Муфта CVVT

Гидравлическая муфта (фазовращатель) имеет звёздочку на корпусе. Она приводится в движение ремнем или цепью привода ГРМ. Распределительный вал жестко соединен с ротором фазовращателя. Между ротором и корпусом муфты расположены масляные камеры. За счёт давления масла, создаваемого масляным насосом возможно смещение ротора и корпуса между собой.

Муфта состоит из:

  • ротора;
  • статора;
  • стопорного штифта.

Стопорный штифт необходим для работы фазовращателей в аварийном режиме. Например, при понижении давления масла. Он выталкивается вперед, что позволяет замкнуть корпус и ротор гидравлической муфты в среднем положении.

Муфта и клапан VVT

Как работает управляющий клапан-соленоид VVT

Данный механизм служит для регулирования подачи масла на задержку и опережение открытия клапанов. Устройство состоит из следующих элементов:

  • Плунжер.
  • Разъём.
  • Пружина.
  • Корпус.
  • Золотник.
  • Отверстия для подвода масла, подачи и слива.
  • Обмотка.

ЭБУ двигателя формирует сигнал, после чего электромагнит перемещает золотник через плунжер. Это позволяет перепускать масло в разном направлении.

Принцип работы

Принцип работы системы заключается в изменении положения распределительных валов относительно шкива коленчатого вала.

Система имеет два направления работы:

  • Опережение открытия клапанов.
  • Запаздывание открытия клапанов.

Опережение

Масляный насос при работе ДВС создает давление, которое подается на электромагнитный клапан CVVT. ЭБУ за счёт широтно-импульсной модуляции (ШИМ) управляет положением клапана VVT. Когда необходимо отрегулировать исполнительный механизм на максимальный угол опережения, клапан перемещается и открывает масляный канал к камере опережения гидромуфты CVVT. Из камеры запаздывания жидкость в это же время начинает сливаться. Это позволяет переместить ротор с распределительным валом относительно корпуса в противоположное относительно вращения коленвала направление.

Например, угол положения муфты CVVT на холостых оборотах составляет 8 градусов. И так как угол механического открытия клапана ДВС составляет 5 градусов, фактически он открывается на 13.

Запаздывание

Принцип аналогичен предыдущему, однако клапан-соленоид при максимальном запаздывании открывает масляный канал к камере запаздывания. В это время ротор CVVT перемещаются в сторону направления вращения коленвала.

Логика работы CVVT

Система CVVT работает на всем диапазоне оборотов ДВС. В зависимости от производителя логика работы может отличаться, но в среднем она выглядит примерно так:

  • Холостой ход. Задача системы – выполнить проворачивание впускного вала так, чтобы обеспечить позднее открытие впускных клапанов. Это положение повышает устойчивость работы двигателя.
  • Средние обороты ДВС. Система обеспечивает промежуточное положение распределительного вала, обеспечивая снижение расхода топлива и выброс вредных веществ с отработанными газами.
  • Высокие обороты ДВС. Действие системы направлено на максимальное увеличение мощности. Для этого впускной вал прокручивается так, чтобы обеспечить опережение открытия клапанов. Так, система обеспечивает лучшее наполнение цилиндров, что позволяет улучшить характеристики ДВС.

Обслуживание

Так как система включает в себя фильтр, его рекомендуется менять. Регламент замены в среднем – 30 тысяч километров. Возможна также и чистка старого фильтра. Автолюбитель вполне может справиться с этой процедурой самостоятельно. Основной сложностью при этом будет поиск места установки самого фильтра. Большинство конструкторов размещают его в масляной магистрали от насоса до электромагнитного клапана. После демонтажа и аккуратной тщательной очистки фильтра CVVT необходимо провести его осмотр. Главное условие – целостность сетки и корпуса. Нужно помнить, что фильтр довольно хрупкий.

Без сомнения, система CVVT направлена на улучшение характеристик двигателя во всех режимах его работы. За счет наличия системы опережения и запаздывания открытия впускных клапанов двигатель имеет лучшую топливную экономичность и сниженные выбросы вредных веществ. Также она позволяет понизить обороты холостого хода без снижения устойчивости работы. Поэтому данная система используется всеми без исключения ведущими автопроизводителями.

Назначение системы CVVT в двигателе

Современное экологическое законодательство обязывает производителей автомобилей разрабатывать более совершенные двигатели, повышать их эффективность и снижать выбросы вредных веществ в выхлопных газах. Конструкторы учатся контролировать ранее принятые процессы со средними компромиссными параметрами. Одной из таких разработок является система изменения фаз газораспределения (CVVT).

  1. Конструкция системы CVVT
  2. Устройство муфты CVVT
  3. Работа управляющего электромагнитного клапана VVT
  4. Как работает система CVVT
  5. Опережение
  6. Запаздывание
  7. Логика работы CVVT
  8. Как обслуживать систему

Конструкция системы CVVT

Система непрерывной регулировки фаз газораспределения CVVT (Continuous Variable Valve Timing) — это система с непрерывной регулировкой фаз газораспределения, которая позволяет более эффективно наполнять цилиндры свежим зарядом. Это достигается за счет изменения времени открытия и закрытия впускного клапана.

Система включает в себя гидравлический контур, состоящий из:

  • Управляющий электромагнитный клапан;
  • Фильтр клапана;
  • Привод — гидравлическая муфта.

Все компоненты системы установлены в головке блока цилиндров двигателя. Фильтр следует периодически чистить или заменять.

Гидравлические муфты CVVT могут устанавливаться как на впускном, так и на обоих валах двигателя внутреннего сгорания.

Если фазовращатели установлены на впускных и выпускных распредвалах, эта система фаз газораспределения будет называться DVVT (Dual Variable Valve Timing).

Дополнительные компоненты системы также включают датчики:

  • Положения и частоты вращения коленчатого вала;
  • Положения распределительного вала.

Эти элементы отправляют сигнал в ЭБУ двигателя (блок управления). Последний обрабатывает информацию и выдает сигнал на электромагнитный клапан, который регулирует подачу масла на муфту CVVT.

Устройство муфты CVVT

Гидравлическая муфта (фазовращатель) имеет звездочку на корпусе. Она приводится в движение ремнем ГРМ или цепью. Распределительный вал жестко связан с ротором гидромуфты. Масляные камеры расположены между ротором и корпусом муфты. Благодаря давлению масла, создаваемое масляным насосом, ротор и картер могут перемещаться относительно друг друга.

Муфта состоит из:

  • ротора;
  • статора;
  • стопорного штифта.

Стопорный штифт необходим для работы фазовращателей в аварийном режиме. Например, когда падает давление масла. Он выдвигается вперед, позволяя корпусу и ротору гидравлической муфты зафиксироваться в среднем положении.

Работа управляющего электромагнитного клапана VVT

Этот механизм используется для регулировки подачи масла на задержку и опережение открытия клапанов. Устройство состоит из следующих компонентов:

  • Плунжер;
  • Разъём;
  • Пружина;
  • Корпус;
  • Золотник;
  • Отверстия для подвода, подачи и слива масла;
  • Обмотка.

Блок управления двигателем выдает сигнал, после чего электромагнит перемещает золотник через плунжер. Это позволяет маслу течь в разных направлениях.

Как работает система CVVT

Принцип работы системы заключается в изменении положения распределительных валов относительно шкива коленчатого вала.

Система имеет два направления работы:

  • Опережение открытия клапанов;
  • Запаздывание открытия клапанов.

Опережение

Масляный насос во время работы двигателя внутреннего сгорания создает давление, которое подается на электромагнитный клапан CVVT. ЭБУ использует широтно-импульсную модуляцию (ШИМ) для управления положением клапана VVT. Когда необходимо настроить привод на максимальный угол опережения, клапан перемещается и открывает масляный канал в камеру опережения гидравлической муфты CVVT. При этом жидкость начинает сливаться из камеры запаздывания. Это дает возможность перемещать ротор с распределительным валом относительно корпуса в направлении, противоположном вращению коленчатого вала.

Например, угол положения муфты CVVT на холостых оборотах составляет 8 градусов. А поскольку угол механического открытия клапана двигателя внутреннего сгорания составляет 5 градусов, он фактически открывается на 13.

Запаздывание

Принцип аналогичен описанному выше, однако электромагнитный клапан при максимальной задержке открывает масляный канал, ведущий в камеру запаздывания. . В этот момент ротор CVVT движется в направлении вращения коленчатого вала.

Логика работы CVVT

Система CVVT работает во всем диапазоне оборотов двигателя. В зависимости от производителя логика работы может отличаться, но в среднем это выглядит так:

  • Холостой ход. Задача системы — повернуть впускной вал так, чтобы впускные клапаны открывались позднее. Это положение увеличивает устойчивость работы двигателя.
  • Средние обороты двигателя. Система создает промежуточное положение распределительного вала, что позволяет снизить расход топлива и выброс вредных веществ с выхлопными газами.
  • Высокие обороты двигателя. Система работает на выработку максимальной мощности. Для этого впускной вал вращается, чтобы обеспечить раннее открытие клапанов. Таким образом, система обеспечивает лучшее наполнение цилиндров, что улучшает характеристики двигателя внутреннего сгорания.
Читайте также  Как отполировать пластиковые фары своими руками?

Как обслуживать систему

Поскольку в системе есть фильтр, рекомендуется его периодическая замена. Это в среднем составляет 30 000 километров пробега. Вы также можете очистить старый фильтр. Автолюбитель может справиться с этой процедурой самостоятельно. Основная трудность в этом случае будет заключаться в нахождении самого фильтра. Большинство конструкторов помещают его в маслопровод от насоса к соленоидному клапану. После того, как фильтр CVVT был разобран и тщательно очищен, его следует осмотреть. Главное условие — целостность сетки и корпуса.

Следует помнить, что фильтр довольно хрупкий.

Без сомнения, система CVVT направлена на улучшение характеристик двигателя во всех режимах работы. Благодаря наличию системы опережения и запаздывания открытия впускных клапанов двигатель более экономичен и снижает выбросы вредных веществ. Это также позволяет минимизировать обороты холостого хода без ущерба для стабильности работы. Поэтому эту систему используют все без исключения крупные производители автомобилей.

Что означает cvvt на двигателе

Ошибка p0011, расшифровка и устранение * I Love My Car

Несинхронная работа распределительного вала может быть связана как с механическими поломками, так и с проблемами в электрооборудовании. Система CVVT, которая корректирует фазы газораспределения, при корректной работе способна сделать двигатель эластичнее, поднять мощность и снизить уровень СО2 в отработанных газах.

Принципиальная схема системы изменения фаз CVVT

Если вкратце, то фазовращатель (система CVVT)корректирует положение распредвала в зависимости от давления масла, температуры двигателя и нагрузки на него. В результате смещения фаз в пределах 8-10 градусов, двигатель адаптируется к резким переменам условий работы.

Корпус фазовращателя

Подробнее о моторах Hyundai Creta

Двигатель Hyundai Creta 1.6

Это G4FG, который является аналогом мотора G4FC Хендай Солярис. Для силового агрегата инженеры использовали алюминиевый блок цилиндров, систему CVVT, отдельные катушки зажигания для каждого цилиндра, цепной привод, распределенный впрыск. Гидрокомпенсаторов нет, зазоры регулируются механически. Мощность силового агрегата составляет 123 л. с. Расход Хендай Крета в смешанном цикле колеблется в пределах 8 л на 100 км пути.

Двигатель Hyundai Creta 2.0

Мотор линейки Nu G4NA построен на базе G4KD. Блок цилиндров в целях облегчения изготовлен из легкосплавного материала. Впускной и выпускной валы комплектуются системой CVVT. Двигатель оснащен гидрокомпенсаторами, геометрия впускного тракта изменяемая. Двухлитровый атмосферник развивает 150 л. с. мощности. Наличие роликовых рычагов, гидрокомпенсаторов усложняет конструкцию. Поэтому выдвигается ряд высоких требований к чистоте ДВС и качеству смазки. Масло желательно менять с периодичностью 7,5 тыс. км.

К особенностям двигателей Хендай Крета относят:

  • Алюминиевый блок цилиндров, который легок и устойчив к воздействию коррозии. Производитель, чтобы упрочнить поверхность цилиндров, использует напыление в виде твердого слоя. В блоке применены тонкостенные чугунные гильзы, залитые жидким алюминием. Из-за мягкости алюминия расточка цилиндров с установкой ремонтных поршней не представляется возможной. Поэтому считается, что двигатели Hyundai Creta не особо ремонтопригодны. Тем не менее их предполагаемый ресурс превышает 200 тыс. км.
  • Всё то же, что встречается на других моторах серий Gamma и Nu. Это значит, стоит ожидать плавания оборотов при заправке низкосортным бензином и несвоевременном ТО, что приведет к сбою настроек ЭБУ, загрязнению дроссельной заслонки. Чтобы очистить двигатель Hyundai Creta от нагара, масляных отложений, рекомендуем профилактически делать промывку с помощью присадки RVS Master Motor Flush MF5. Это особенно актуально, когда вы переходите на новую марку масла или же допустили нарушения в регламенте технического обслуживания. А все потому, что MF5 щадяще очищает масляную систему, а затем восстанавливает изношенные стенки цилиндров, утилизирует оксиды металлов, возвращает эластичность резиновым уплотнителям.
  • Течь масла двигателя из-под крышки ГРМ, в районе стыка блока цилиндров и головки (при больших пробегах). Также вероятен стук в газораспределительном механизме, спровоцированный растянутой цепью.
  • Двигатель Hyundai Creta рассчитан на масло с вязкостью SAE 20, что свидетельствует о высокоточной сборке, строгом сохранении зазоров на распределительных валах, вкладышах.

В блоках моторов Хендай Крета имеются чугунные гильзы, поэтому для восстановления и комплексной защиты оптимально подойдет присадка RVS Master. Она очистит алюминиевые поверхности, сформирует на деталях из черных металлов плотный слой металлокерамики.

Для безразборного ремонта 1,6-литрового двигателя Gamma G4FG и 2-литрового мотора G4NA применяют присадку для масла RVS Master Engine Ga4. Ведь в смазочной системе первого умещается 3,6 л масла, а второго – 4 л масла. Благодаря применению присадки перед заменой расходных материалов удается достичь следующих результатов:

  1. Упрочнение узлов трения.
  2. Нормализация низкой компрессии, которая упала из-за естественного износа ДВС.
  3. Снижение расхода масла – до 30%, а топлива – до 15%.
  4. Минимизация количества шумов и вибраций.
  5. Упрощение пуска на холодную, мотор запускается проще, перестает троить до прогрева.
  6. Увеличение ресурса двигателя.

Главные проблемы при эксплуатации

Несмотря на ряд конструктивных отличий моторов Хендай Крета российской сборки, недочеты остаются почти неизменными. Но если знать «слабые» места и должное внимание уделять обслуживанию, сложностей возникнуть не должно.

К основным проблемам, связанным с конструктивными особенностями, стоит отнести:

Наличие алюминиевого блока цилиндров

Несмотря на стойкость к коррозии и небольшой вес, такое нововведение имеет ряд недостатков. Главный из них – ускоренный износ, из-за чего со временем снижается компрессия, повышается расход масла, и возникают проблемы с холодным пуском. Кроме того, алюминий по своей структуре очень мягкий металл, который расточить не удастся.

В случае с Кретой, расточить алюминиевый блок цилиндров не удастся.

Применение тонкостенных «сухих» чугунных гильз

В процессе изготовления упомянутые детали «заполняются» жидким алюминием, из-за чего они как бы сливаются с конструкцией блока. Так что достать изделия не представляется возможным. Одно из решений – расточка, но из-за небольшой толщины стенок цилиндров сделать это почти нереально.

Сложность ремонта

По заявлению специалистов, моторы Hyundai Creta сложно отнести к ремонтопригодным узлам, да и сам завод-изготовитель не подразумевает возможность капремонта. Если же применять «кустарные» способы, о продолжительном ресурсе можно не мечтать.

Низкий срок службы

На многих сайтах встречаются мнения, что ресурс двигателя не превышает 180-200 тысяч километров, что эквивалентно 5-7 годам эксплуатации. Но на практике такие заявления не подтверждены. Более того, многие владельцы моделей Хендай уверяют об успешном преодолении отметки в 300 тысяч километров. Срок службы во многом зависит от правильной эксплуатации – бережного отношения при пуске в мороз, ограничении числа оборотов и так далее.

Дороговизна замены блока цилиндров

Через 220-250 тысяч километров блок цилиндров может износиться, что потребует установки новой запчасти. При этом узел меняется в сборе, а средние расходы на такую работу — 60-80 тысяч рублей.

Отсутствие гидрокомпенсаторного зазора в ГРМ (в старых моторах)

По этой причине уже через 110-120 тысяч километров не обойтись без регулировки расстояния между толкателем и кулачком.

Несмотря на наличие гидрокомпенсаторов, регулировку производить все же придется.

Китайское производство

Несмотря на тот факт, что мотор изготовлен на заводах Китая, на качестве это не сказывается. В целом сборка выполнена аккуратно и без явных замечаний.

Перечисленные выше и другие недостатки двигателей нового Хендай Крета проявляют себя следующим образом:

  1. Появление стука в ГРМ (в 9 из 10 случаев причина – шум от цепи). Здесь спасает регулировка клапанов. Кроме того, такая проблема хоть редко, но может проявляться на новых Хендай Крета. Лучшее решение – сразу обратиться в сервис.
  2. Шум, похожий на цокот или щелчки, свидетельствует о нормальной работе форсунок (обычное явление).
  3. Течь масла – редкое явление, но прокладку под крышкой ГРМ сложно назвать идеальной. При появлении следов смазывающей жидкости на месте стыка головки и блока, лучше не тянуть с заменой.
  4. «Плавание» оборотов решается чисткой заслонки дросселя или корректировкой программы ЭБУ.
  5. Вибрации на ХХ вызваны загрязнением заслонки дросселя или свечей. Если колебания сильные, стоит обратить внимание на целостность опор мотора.
  6. Вибрации на средних оборотах часто объясняются вхождением двигателя в резонанс. Для решения проблемы достаточно нажать и отпустить педаль газа.

Варианты тюнинга мотора

Из-за проблем с задирами стальных гильз цилиндров двигатель G4NA не имеет смысла модернизировать. Поскольку, даже механический тюнинг резко снижает эксплуатационный ресурс. Вся серия Nu оснащается специальными функциями и высокотехнологичными системами – DOHC, CVVT/CVVL, MPI/GDI, гидрокомпенсаторы и регулируемая геометрия впускного тракта.

Атмосферный тюнинг можно выполнить за счет модернизации следующих систем:

  • выпускной тракт – увеличение сечения выхлопа до 54 – 63 мм, установка паука 4-1 или 4-2-1;
  • механизм газораспределения – замена штатных валов «злыми» распредвалами с широкими фазами;
  • впускной тракт – дроссель на каждом цилиндре, фильтр нулевого сопротивления.
Читайте также  Не заводится ниссан тиида автомат что делать?

Наддувный тюнинг лучше производить комплектом турбо-кит, включающим в себя компрессор или турбину, интеркуллер для охлаждения смеси, усиленную ШПГ, прокладки, крепеж и прочие мелочи.

Таким образом, мотор G4NA относится к семейству Nu, промежуточному между Бета 2 и Гамма. Базовая версия имеет 201 Нм крутящего момента и 167 л. с. мощности. Для российского рынка последний показатель занижен искусственно до 150 л. с., чтобы снизить транспортный налог.

Двигатель Hyundai G4NA

Силовой агрегат G4NA относится к серии NU — модернизированному семейству Theta 2. Он вышел в 2012 году, устанавливался на седаны и популярные паркетники. За основу был взят рядовой G4KD — маломощный, но не имеющий каких-либо явных недостатков агрегат.

Описание двигателя G4NA

Рассмотрим особенности этого ДВС:

  • БЦ и 2-вальная ГБЦ отлиты из сплава алюминия;
  • цилиндровые гильзы стальные, но с тонкими стенками, посадка в блок самостоятельно невозможна;
  • цепь выполняет функцию привода ГРМ — она и передаёт вращение от коленвала к распредвалам;
  • 16 клапанов, установленных по схеме DOHC, регулируются автоматически, посредством гидравлических компенсаторов;
  • навесное оборудование получает привод через клиновые ремни.

На новом двигателе задействовано несколько передовых систем:

  • настройка фаз и высоты подъёма клапанов осуществляется системами Dual CVVt и CVVL;
  • система питания — распределённый впрыск MPI или непосредственный GDI.

Интересный момент. Для российского рынка поставляются двигатели в исполнении MPI/ Dual CVVt. А для европейского — GDI/ CVVL.

Цепь ГРМ обрывается редко, чаще перескакивают звенья. В этом случае, также как и при обрыве, клапана гнёт от встречи с поршнями. Разработчики не предусмотрели цековки на торцах поршней, посчитав, что металлическая цепь будет надёжно ходить 200 тыс. км и больше. На самом деле, это возможно лишь в случае постоянной эксплуатации машины по идеально ровным дорожным покрытиям, что в наших условиях — из области фантастики.

Новым в конструкции двигателя G4NA, что отличает его от оригинала G4KD, стало введение гидротолкателей. На прежнем моторе их не было, регулировка клапанов проводилась вручную. Кроме того, ДВС получился длинноходным, поскольку соотношение хода поршня к размеру цилиндра больше 1 единицы. На G4KD этот показатель равнялся 86/86 мм, стало — 97/81 мм.

В остальном практически всё осталось как есть, не считая частичных изменений. Так, помимо добавления гидрокомпенсаторов с рокерами, улучшено навесное оборудование и его компоновка на корпусе. Впускной коллектор заменили на пластиковый, стало возможным изменение геометрии каналов. А вот цилиндровые гильзы, которые стояли внутри дюралевого БЦ, остались теми же — тонкими и не надёжными.

Таким образом, конструкторам так и не удалось осуществить планетарное улучшение технических возможностей — не увеличилась мощность, крутящий момент и объёмы цилиндров. Зато появилась хорошая приёмистость, отпала необходимость сложной и дорогостоящей регулировки тепловых зазоров.

Изготовитель Hyundai
Марка ДВС G4NA
Начало производства 2006 г.
Объем 1999 см3 (2,0 л)
Мощность 123 кВт (167 л. с.)
Момент крутящий 201 Нм (на 4200 об/мин)
Вес 117 кг
Степень сжатия 10.3
Питание инжектор
Тип мотора рядный бензиновый
Зажигание DIS-4
Число цилиндров 4
Местонахождение первого цилиндра ТВЕ
Число клапанов на каждом цилиндре 4
Материал ГБЦ сплав алюминиевый
Впускной коллектор пластиковый
Выпускной коллектор литой чугунный
Распредвал встроен механизм CVVT
Материал блока цилиндров алюминиевый сплав
Диаметр цилиндра 81 мм
Поршни алюминиевые
Коленвал 5 опор, 8 противовесов
Ход поршня 97 мм
Горючее АИ-95
Нормативы экологии Евро-5
Расход топлива трасса – 6,1 л/100 км; смешанный цикл 7,5 л/100 км; город – 9,8 л/100 км
Расход масла максимум 0,6 л/1000 км
Какое масло лить в двигатель по вязкости 5W30, 5W40, 0W30, 0W40
Масло для G4NA по составу синтетика, полусинтетика
Объем масла моторного 4,2 л
Температура рабочая 95°
Ресурс ДВС заявленный 250000 км; реальный 200000 км
Регулировка клапанов гидротолкатели
Система охлаждения принудительная, антифриз
Объем ОЖ 6,9 л
Помпа Optima III 2510041700
Свечи на G4NA Bosch 0242236578, 0242236577 иридий, 0242229791 платина-иридий, Champion EON9/286,
Зазор свечи 1,1 мм
Цепь ГРМ 243212Е000
Порядок работы цилиндров 1-3-4-2
Воздушный фильтр Mando/MAF086
Масляный фильтр Bosch 045103316, Borg&Beck BFO4198, Blue Print ADG02144, AMC HO-701
Маховик 232002
Болты крепления маховика М12х1,25 мм, длина 26 мм
Маслосъемные колпачки Ajusa 57047000
Компрессия от 13 бар, разница в соседних цилиндрах максимум 1 бар
Обороты ХХ 750 – 800 мин-1
Усилие затягивания резьбовых соединений свеча – 31 – 39 Нм; маховик – 62 – 87 Нм; болт сцепления – 19 – 30 Нм; крышка подшипника – 68 – 84 Нм (коренной) и 43 – 53 (шатунный); головка цилиндров – три стадии 20 Нм, 69 – 85 Нм + 90° + 90°

Обслуживание

Производитель не рекомендует проводить капитальный ремонт из-за не ремонтопригодности дюралевого блока цилиндров. Однако некоторые российские автосервисы практикуют технологию перегильзовки на имеющемся оборудовании.

Что касается рекомендаций по обслуживанию, то производитель указывает следующие сроки:

  • масло и фильтр — обновлять каждые 6-7 тыс. км;
  • свечи зажигания — заменять не реже 20 тыс. пробега;
  • хладагент — менять через каждые 30 тыс. км;
  • топливный фильтр — менять каждые 40 тыс. км пробега;
  • ремни НО — заменять каждые 50 тыс. км;
  • выпускной коллектор — после 70 тыс. км лучше заменить, так как стенки выгорают;
  • цепь ГРМ — менять на рубеже 150-200 тыс. пробега.

Также рекомендуется ежегодно обновлять воздушный фильтр и прочищать отверстия вентиляции картера.

Характерные неисправности

Мотор G4NA имеет практически те же неполадки, что и его предшественник G4KD. Несмотря на внедрение форсунок охлаждения поршней, задиры никуда не исчезли.

  1. Агрегат дизелит (шумит) на средних и малых оборотах, в том числе и на прогретом ДВС. Причины этого надо искать в задирах стенок цилиндров, которые неминуемо возникают после 20-30 тыс. пробега. Рекомендуется перегильзовать блок или купить новый, если дизельное цоканье слишком напрягает.
  2. Стуки на холодную, иногда они продолжаются и на прогретый мотор. Как правило, это связано с проворачиванием шатунного вкладыша. Его надо заменить, чтобы устранить этот шум и избежать капитальных затрат.
  3. Сильные вибрации на G4NA возникают из-за смещения оси водяного насоса. Решение — помпу заменить.
  4. Частый перегрев, жор масла. Если при этом мотор издаёт стуки, это связано с износом ЦПГ. Как правило, юбка поршня бьётся о стенки цилиндра. Требуется перегильзовка или замена ШПГ.
  5. Шум также возможен от генератора. В данном случае появляется люфт в муфте, и обгонную деталь придётся заменить. Стоит она около 10 тыс. рублей (оригинал) и 3 тыс. рублей (достойный аналог).

Также часто на этом моторе внутрь цилиндров попадает металлическая стружка, которая становится причиной задиров. Это возможно из-за разрушения внутренних частей катализатора. Поэтому за нейтрализатором нужно постоянно следить.

Ресурс двигателя 250+, по мнению производителя. Как и говорилось выше, на самом деле это зависит от условий эксплуатации, качества топлива и масла, а также других индивидуальных особенностей.

Недостатки и преимущества

Рассмотрим сначала минусы:

  • на внутренних стенках цилиндров после 20-тысячного пробега уже образуются задиры;
  • двигатель очень чувствителен к плохому маслу, отчего могут возникнуть различные неполадки;
  • алюминиевый блок — самое слабое место, так как он не ремонтопригоден;
  • давление смазки под клапанной крышкой может неожиданно повысится;
  • коленвал тоже не подлежит ремонту;
  • шатунные вкладыши отдельно, в отличие от G4KD, не поставляются.

Вообще, корейцы с этим двигателем перемудрили. Они максимально усложнили элементы, чтобы исключить ремонт своими руками. Хорошо, что с 2016 года ставят вкладыши с керамической защитой — они ходят несколько дольше.

  • в ДВС задействовано несколько передовых технорешений;
  • снижен эксплуатационный бюджет за счёт внедрения гидрокомпенсаторов.

Автомобили, на которые устанавливали G4NA

Этим двигателем оснащали следующие модели линейного ряда Киа:

  • хэтчбек и седан Церато/Спектра для американского и корейского рынков;
  • кроссовер Спортейдж второго поколения;
  • универсал и мини SUV Соул;
  • купе Церато Куп;
  • универсал и седан Магентис/Оптима/Лотз второго и третьего поколений.

А также модели от Хёндай:

  • кроссовер Тускон/Ай35;
  • универсал и седан Соната/Ай40;
  • мини кроссовер Грета/Ай25/Кантус — версии с АКПП;
  • хэтчбек Элантра/Ай30 третьего и четвёртого поколений.

Модернизация

Двигатель G4NA не имеет смысла тюнинговать из-за проблем с задирами цилиндров. Даже обычная механическая доработка значительно снижает ресурс этого мотора. Однако можно модернизировать некоторые узлы и механизмы.

  1. Систему выпуска, увеличив диаметр труб до 60 мм и установив паук 4-2-1 или 4-1.
  2. Систему впуска, установив ФНС (фильтр нулевого сопротивления), а также дроссель на каждый цилиндр.
  3. ГРМ — заменив стандартные распредвалы на валы с широкими фазами.
Читайте также  Лобовое стекло с шумоизоляцией что это?

Что касается турбомодернизации, то проводить его надо строго лишь с помощью готовых комплектов. Обязательно надо усилить ШПГ, установить новые прокладки, поставить интеркуллер для охлаждения. Полезно будет заменить различные крепежи на новые и усиленные.

Неисправный клапан vvti. Где находится VVTI-клапан и как его проверить

Принцип работы системы

Принцип действия системы VVT-I способствует плавному изменению фазы газораспределения, в зависимости от условий работы силового агрегата. Это происходит за счет поворота распредвала впускных клапанов по отношению к приводящей шестерне в пределах от 40 до 60 градусов.

Привод VVT, оснащенный лопастным ротором, монтируется на впускном валу. Если мотор находится в состоянии покоя, то нормальный запуск обеспечивается специальным фиксатором, удерживающем распределительный вал в положении максимальной задержки.

1 — управляющий клапан VVT-i, 2 — датчик положения распредвала, 3 — датчик температуры охлаждающей жидкости, 4 — датчик положения коленвала, 5 — привод VVT

За счет электромагнитного клапана, управляемого электронным блоком, осуществляется регулировка подачи масла в полости задержки и опережения привода VVT. Информация по дозировке подаваемого масла берется от сигналов датчика положения распределительных валов. Максимальный угол задержки на заглушенном моторе, создается благодаря золотнику, который перемещается специальной пружиной.

Команды на электромагнитный клапан поступают от блока управления двигателем. В зависимости от конкретного режима мотора, может происходить следующее:

клапан переходит в режим опережения и сдвигает золотник управляющего механизма. При этом поток масла направляется к ротору со стороны полости опережения, поворачивая распределительный вал;

Движение масла внутри клапана и муфты VVT-I

  • клапан переходит в режим задержки и перемещает золотник управляющего механизма. При этом поток масла направляется к ротору со стороны полости задержки, что приводит к вращению распредвала в туже сторону;
  • удержания клапана в нейтральном положении при отсутствии изменений.

Возможные причины неисправности клапана

Основных причин неисправностей клапана не так уж и много. Можно выделить две, которые встречаются особенно часто. Так, VVTI-клапан может выходить из строя по причине того, что есть обрывы в катушке. В данном случае элемент не сможет верно реагировать на передачи напряжения. Диагностика неисправности легко осуществляется при помощи проверки измерения сопротивления обмотки катушки датчика.

Вторая причина, по которой клапан VVTI (Toyota) работает неправильно или же не работает вообще — это заедания в штоке. Причиной таких заеданий может быть банальная грязь, которая со временем скопилась в канале. Также возможно, деформирована уплотняющая резинка внутри клапана. В этом случае восстановить механизм очень просто — достаточно очистить грязь оттуда. Это можно сделать с помощью отмачивания или вымачивания элемента в специальных жидкостях.

Lifehack Блог Диагностика VVT-i

Эта запись в продолжение темы о разборе и дефектовки контроллера VVT-i (Ерундовый Блог. Муфта VVT-i). А точнее это скорее всего предистория. Так как сначала нужно диагностировать поломку, а потом что либо дефектовать, разбирать и чинить.В свое время, мне достаточно часто приходилось отвечать на вопросы, касающиеся работоспособности VVTL или VVT, об ошибках P1349, P1693 и т.д.

Вдруг у Вас загорелась ошибка советующая выкинуть двигатель (Check Engine), но ничего особенного не происходит, машина как ехала так и ехала, только со временем приходит осознание того, что она стала больше есть топлива, и менее приёмиста на средних оборотах.Считав ошибку, допустим что Вы получили одну из самых распространенных ошибок VVT этоP1349 или P1346Если P1349 — прямо намекает на дефект механизма VVT, то P1346 сигнализирует об ошибке связанной с датчиком определения положения распредвала, но так или иначе, может говорить, о нарушениях в работе VVT, например неверных Фазах ГРМ.

Диагностика.В первую очередь необходимо определить Какой именно из узлов делает нам мозг.Рассмотри основные 3 механических неисправности1. Фильтр клапана VVT

Банальная сеточка, но она может быть немного грязной )

и тем самым приводить к нарушению работы системы VVT2. OCV VALVE, он же VVT Solenoid, он же клапан VVTДостаточно нежный прибор, представляющий из себя несколько портовый Соленоид, перепускающий масло в тот или иной канал (на опережение или запаздывание вала).Многие люди предполагают, что он работает и управляется по алгоритму «открыл» — «закрыл» — «удержал давление»Не совсем так. VVT клапан управляется ECU по ШИМ, причем делается это непрерывно.Вот как работает клапан в двигателе

Хоть устройство клапана банальное, но работая в агрресивной среде часто страдают слабые места, например деформация уплотнительного кольца, приводит в залипанию штока, или же ослабление возвратной пружины, не возвращает клапан в первоначальное положение.И так… диагностируем.Берем 2 провода желательно с коннекторами

Подключаем к клапану и к аккумулятору, второй полюс пока не соединяем

Замыкаем второй провод на плюс (без фанатизма, короткими замыканиями, можно спалить обмотку) и слушаем

Щелкает ходит туда сюда… Если не щелкает… то тоже в принципе все понятно.Однако, небольшая поправочка. Этот клапан может прекрасно работать когда вы снимите его из двигателя, но не работать в самом двигателе.Это связано с тем, что клапан может клинить только в нагретом состоянии.Поэтому перед этим тестом, прогрейте двигатель до рабочей температуры…

3. Муфта VVTДопустим клапан рабочий. Следующий Тест — это активация контроллера VVT. Так же можно осуществить без наличия диллерского сканера.Заводим двигатель, и подаем на клапан VVT напряжение

Если в работе двигателя не происходит никаких изменений… То контроллер VVT скорее мертв чем жив )Что должно было произойти?Подавая напряжение, вы открываете канал, который приводит Муфту VVT в положение соответствующее максимальному перекрытию впускных и выпускных клапанов.

На холостом ходу, двигатель не может работать с таким перекрытием, так как увеличивается прорыв выхлопных газов во впуск. И двигатель глохнет.

Если давление масла в системе достаточно… то механически там просто больше нечему ломаться.

Проводка, электроника, фазы ГРМ и датчик положения распредвала.при P1346 следует проверить, правильно ли выставлены метки фаз ГРМ, а так же работоспособность датчика, целостность проводки, нет ли окисления в разъемах… Ну и самое плохое и туго диагностируемое — это ECU…

Типовые симптомы неполадок системы VVTI

Итак, система должна изменять фазы работы Если с ней возникают какие-либо проблемы, тогда автомобиль не сможет нормально функционировать в одном либо в нескольких рабочих режимах. Можно выделить несколько симптомов, которые скажут о неисправностях.

Так, автомобиль не удерживает холостые обороты на одном уровне. Это говорит о том, что VVTI-клапан не работает так, как нужно. Также о различных неполадках в системе скажет «торможение» двигателя. Часто при проблемах с этим механизмом изменения фаз отсутствует возможность мотора работать на низких оборотах. Еще о проблемах с клапаном может говорить ошибка P1349. Если на прогретом силовом агрегате высокие холостые обороты, автомобиль совсем не едет.

Плавное включение или Fiat MultiAir, BMW Valvetronic, Nissan VVEL, Toyota Valvematic

Хотите плавности пожалуйста, и тут первой в разработках была компания (барабанная дробь) – FIAT. Кто бы мог подумать, они первые создали систему MultiAir, она еще более сложная, но более точная.

«Плавная работа» здесь применена на впускных клапанах, причем распредвала здесь вообще нет. Он сохранился только на выпускной части, но он имеет воздействие и на впуск (наверное запутал, но постараюсь объяснить).

Принцип работы. Как я сказал, здесь есть один вал, и он руководит и впускными и выпускными клапанами. ОДНАКО если на «выпускные» он воздействует механически (то есть банально через кулачки), то вот на впускные воздействие передается через специальную электро-гидравлическую систему. На валу (для впуска) есть что-то типа «кулачков», которые нажимают не на сами клапана, а на поршни, а те передают приказания через электромагнитный клапан на рабочие гидроцилиндры открывать или закрывать. Таким образом, можно добиться нужного открытия в определенный период времени и оборотов. При малых оборотах, узкие фазы, при высоких – широкие, и клапан выдвигается на нужную высоту ведь здесь все управляется гидравликой или электрическими сигналами.

Это позволяет сделать плавное включение в зависимости от оборотов двигателя. Сейчас такие разработки есть также у многих производителей, таких как — BMW (Valvetronic), Nissan (VVEL), Toyota (Valvematic). Но и эти системы не идеальны до конца, что опять не так? Собственно здесь опять же есть привод ГРМ (который забирает на себя около 5% мощности), есть распредвал и дроссельная заслонка, это опять забирает много энергии, соответственно крадет КПД, вот бы от них отказаться.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: